
 

 Soccer
  8th December 2022 / Document No D22.100.219

  Prepared By: C4rm3l0

  Machine Author: sau123

  Difficulty: Easy

  Classification: Official 

 

 

 

Synopsis  
Soccer is an easy difficulty Linux machine that features a foothold based on default credentials, forfeiting 
access to a vulnerable version of the Tiny File Manager , which in turn leads to a reverse shell on the 
target system ( CVE-2021-45010 ). Enumerating the target reveals a subdomain which is vulnerable to a 
blind SQL injection through websockets. Leveraging the SQLi leads to dumped SSH  credentials for the 
player  user, who can run dstat  using doas - an alternative to sudo . By creating a custom Python  plugin 
for doas , a shell as root  is then spawned through the SUID  bit of the doas  binary, leading to fully 
escalated privileges.

Skills Required  
Basic web enumeration

Basic Linux enumeration

Skills Learned  
Identifying blind SQL Injections

Leveraging SUID  binaries to escalate privileges

Enumeration



Enumeration  
Nmap  

Scanning the target with Nmap  reveals three open TCP  ports. The first two are occupied by SSH  and 
Nginx , both of which running on their default ports. The last open port is 9091 , which is running an 
unknown service. 

HTTP  
Browsing to port 80  redirects us to the domain soccer.htb .

ports=$(nmap -p- --min-rate=1000 -T4 10.10.11.194 | grep '^[0-9]' | cut -d '/' -f 1 | 

tr '\n' ',' | sed s/,$//)

nmap -p$ports -sC -sV 10.10.11.194



We proceed to add the domain to our /etc/hosts  file and refresh the page.

The web app appears to be a static page, without any functionality. We run a directory scan using gobuster
to find any potentially interesting files.

echo "10.10.11.194 soccer.htb" | sudo tee -a /etc/hosts

gobuster dir -u http://soccer.htb -w /usr/share/wordlists/dirbuster/directory-list-2.3-

medium.txt



Our enumeration yields a /tiny  directory, which when navigated to shows a login panel to a file manager.

A search for the keywords tiny file manager  reveals a GitHub  repository, which in turn divulges the 
default administrative credentials for the service, namely admin:admin@123 .

We log in successfully and land on the file manager's dashboard, which also reveals the service's version, 
namely 2.4.3 . As a quick search reveals, Tiny File Manager <= 2.4.6  allows remote attackers with 
valid user accounts to upload malicious PHP  files to the webroot and achieve code execution on the target 
server, which is also known as CVE-2021-45010 . 

https://github.com/prasathmani/tinyfilemanager


The tiny  folder contains an uploads  directory, to which we have write permissions.

With that in mind, we can try uploading a php reverse shell.

https://github.com/pentestmonkey/php-reverse-shell/blob/master/php-reverse-shell.php


We fire up a listener on port 4444  and can trigger the reverse shell by navigating to 
/tiny/uploads/shell.php . 

We successfully get a shell as www-data .

Foothold  
HTTP  
Enumerating the target system as the www-data  user yields no interesting vectors or files, however, 
remembering that the web application is running on Nginx , we take a look at the sites-enabled  directory 
for possible subdomains that weren't detected during our initial enumeration:

nc -nlvp 4444



We add the newly discovered subdomain to our /etc/hosts  file and proceed to browse to it.

The site appears similar in form to the initial static page, however, we see that it has some added 
functionality in the form of a Login  and Signup  button. Attempting to log in with typical admin credentials 
returns no results, so we use a newly registered account to log into the site, revealing the /check  page.

echo "10.10.11.194 soc-player.soccer.htb" | sudo tee -a /etc/hosts



We are provided with a ticket id, as well as the possibility to check whether a given ticket is valid or not. 
Looking at the site's source code reveals that this functionality is based on a WebSocket server running on 
port 9091 , which we also found during our enumeration:

In order to efficiently enumerate the functionality of the service, we intercept a request using BurpSuite  
and send it to the Repeater  for further analysis. By manipulating the input, we discover that mathematical 
operations have no impact on whether the ticket is deemed valid or not. This leads us to suspect that the 
site's logic extracts the submitted value and compares it to a database. To verify our hypothesis, we inject 
an SQL boolean payload of OR 1=1  and observe the response, which confirms that the ticket is considered 
valid. This suggests that the form is vulnerable to SQL injection attacks.

 <script>

        var ws = new WebSocket("ws://soc-player.soccer.htb:9091");
        window.onload = function () {
        
        var btn = document.getElementById('btn');
        var input = document.getElementById('id');
        
        ws.onopen = function (e) {
            console.log('connected to the server')
        }
        input.addEventListener('keypress', (e) => {
            keyOne(e)
        });
          <...SNIP...>
    </script>

https://en.wikipedia.org/wiki/WebSocket


Blind SQLi  
The vulnerability we found is also known as a blind SQL injection, as we can inject SQL logic, but cannot 
directly see or access any of our queries' output. We must therefore use indirect methods to determine the 
outcome of our queries, such as observing changes in the server's behavior or responses to different 
inputs. Fortunately, sqlmap  can automate this task for us as it can directly access the WebSocket  service 
on port 9091 , given that we provide it with the necessary parameters for its queries. 

sqlmap -u "ws://soc-player.soccer.htb:9091" --data '{"id": "*"}' --dbs --threads 10 --

level 5 --risk 3 --batch



After a few minutes sqlmap  successfully dumps the database names, with the more interesting candidate 
being soccer_db . We can then directly target that database and dump its contents, using the -D  and --
dump  flags, respectively.

sqlmap -u "ws://soc-player.soccer.htb:9091" --data '{"id": "*"}' --threads 10 -D 

soccer_db --dump --batch



The database is dumped successfully, revealing the credentials player:PlayerOftheMatch2022 , which we 
can use to SSH  into the box. 

The user  flag can be found at /home/player/user.txt .

Privilege Escalation  
SUID (setuid) is a Unix-based security mechanism that allows executables to be run with the privileges of the 
file's owner. This is useful for executables that need to access system resources or perform actions that are 
typically restricted to privileged users, such as changing system settings or accessing other users' files. 
However, it also presents a potential security vulnerability because it allows attackers to escalate their 
privileges on a system by exploiting SUID executables.

Looking for files with the SUID  bit set, we stumble upon the /usr/bin/doas  binary, which is an alternative 
to the more commonly used sudo  binary:

find / -type f -perm -4000 2>/dev/null



A quick search for doas  reveals that its configuration file can be found at /usr/local/etc/doas.conf , 
which in turn reveals that the player  user can run dstat  with elevated privileges, as the binary is owned 
by root .

Dstat  is a tool for generating system resource statistics. Taking a look at its manual shows a handful of 
interesting information, most importantly revealing the possibility of using Python  plugins for the tool.

cat /usr/local/etc/doas.conf

man dstat



If we can execute Python  code as the root user, we could spawn a shell with the elevated privileges intact. 
Although dstat  plugins can only be hosted in certain directories, we have write  access to one of them, 
which is /usr/local/share/dstat . This means that we can potentially exploit this access to execute 
arbitrary code as the root user.

We create a Python  script that spawns a bash  shell, and save it in the above directory, making sure to 
prefix it with  dstat_ , as per the manual.

To verify that the plugin is detected by dstat , we run the command with the --list  flag.

echo 'import os; os.system("/bin/bash")' > /usr/local/share/dstat/dstat_pwn.py

doas /usr/bin/dstat --list



Finally, having confirmed that our plugin is detected, we run dstat  and specify the plugin by passing it as a 
command line argument, using a --  prefix.

Our payload successfully triggered, and we have obtained a shell as root . The final flag can be found at 
/root/root.txt . 

doas /usr/bin/dstat --pwn


	Synopsis
	Skills Required
	Skills Learned

	Enumeration
	Nmap
	HTTP

	Foothold
	HTTP
	Blind SQLi

	Privilege Escalation

